lunes, 30 de marzo de 2020

Revisiting Decades-Old Voyager 2 Data, Scientists Find One More Secret | NASA

Revisiting Decades-Old Voyager 2 Data, Scientists Find One More Secret | NASA





Revisiting Decades-Old 

Voyager 2 Data, Scientists 

Find One More Secret

Eight and a half years into its grand tour of the solar system, NASA’s Voyager 2 spacecraft was ready for another encounter. It was Jan. 24, 1986, and soon it would meet the mysterious seventh planet, icy-cold Uranus.
Voyager 2 Image of Uranus
Voyager 2 took this image as it approached the planet Uranus on Jan. 14, 1986. The planet’s hazy bluish color is due to the methane in its atmosphere, which absorbs red wavelengths of light.
Credits: NASA/JPL-Caltech
Over the next few hours, Voyager 2 flew within 50,600 miles (81,433 kilometers) of Uranus’ cloud tops, collecting data that revealed two new rings, 11 new moons and temperatures below minus 353 degrees Fahrenheit (minus 214 degrees Celsius). The dataset is still the only up-close measurements we have ever made of the planet.
Three decades later, scientists reinspecting that data found one more secret.
Unbeknownst to the entire space physics community, 34 years ago Voyager 2 flew through a plasmoid, a giant magnetic bubble that may have been whisking Uranus’s atmosphere out to space. The finding, reported in Geophysical Research Letters, raises new questions about the planet’s one-of-a-kind magnetic environment.

A wobbly magnetic oddball

Planetary atmospheres all over the solar system are leaking into space. Hydrogen springs from Venus to join the solar wind, the continuous stream of particles escaping the Sun. Jupiter and Saturn eject globs of their electrically-charged air. Even Earth’s atmosphere leaks. (Don’t worry, it will stick around for another billion years or so.)
The effects are tiny on human timescales, but given long enough, atmospheric escape can fundamentally alter a planet’s fate. For a case in point, look at Mars.
“Mars used to be a wet planet with a thick atmosphere,” said Gina DiBraccio, space physicist at NASA’s Goddard Space Flight Center and project scientist for the Mars Atmosphere and Volatile Evolution, or MAVEN mission. “It evolved over time” — 4 billion years of leakage to space — “to become the dry planet we see today.”
Atmospheric escape is driven by a planet’s magnetic field, which can both help and hinder the process. Scientists believe magnetic fields can protect a planet, fending off the atmosphere-stripping blasts of the solar wind. But they can also create opportunities for escape, like the giant globs cut loose from Saturn and Jupiter when magnetic field lines become tangled. Either way, to understand how atmospheres change, scientists pay close attention to magnetism. 
That’s one more reason Uranus is such a mystery. Voyager 2’s 1986 flyby revealed just how magnetically weird the planet is.
“The structure, the way that it moves … ,” DiBraccio said, “Uranus is really on its own.”
Unlike any other planet in our solar system, Uranus spins almost perfectly on its side — like a pig on a spit roast — completing a barrel roll once every 17 hours. Its magnetic field axis points 60 degrees away from that spin axis, so as the planet spins, its magnetosphere — the space carved out by its magnetic field — wobbles like a poorly-thrown football. Scientists still don’t know how to model it.
Animation of magnetic field and rotation of Uranus
Animated GIF showing Uranus’ magnetic field. The yellow arrow points to the Sun, the light blue arrow marks Uranus’ magnetic axis, and the dark blue arrow marks Uranus’ rotation axis.
Credits: NASA/Scientific Visualization Studio/Tom Bridgman
This oddity drew DiBraccio and her coauthor Dan Gershman, a fellow Goddard space physicist, to the project. Both were part of a team working out plans for a new mission to the 'ice giants' Uranus and Neptune, and they were looking for mysteries to solve. Uranus’ strange magnetic field, last measured more than 30 years ago, seemed like a good place to start.
So they downloaded Voyager 2’s magnetometer readings, which monitored the strength and direction of the magnetic fields near Uranus as the spacecraft flew by. With no idea what they’d find, they zoomed in closer than previous studies, plotting a new datapoint every 1.92 seconds. Smooth lines gave way to jagged spikes and dips. And that’s when they saw it: a tiny zigzag with a big story.
“Do you think that could be … a plasmoid?” Gershman asked DiBraccio, catching sight of the squiggle.
Magnetometer readings showing the plasmoid
Magnetometer data from Voyager 2’s 1986 flyby of Uranus. The red line shows the data averaged over 8-minute periods, a time cadence used by several previous Voyager 2 studies. In black, the same data is plotted at a higher time resolution of 1.92 seconds, revealing the zigzag signature of a plasmoid.
Credits: NASA/Dan Gershman
Little known at the time of Voyager 2’s flyby, plasmoids have since become recognized as an important way planets lose mass. These giant bubbles of plasma, or electrified gas, pinch off from the end of a planet’s magnetotail — the part of its magnetic field blown back by the Sun like a windsock. With enough time, escaping plasmoids can drain the ions from a planet’s atmosphere, fundamentally changing its composition. They had been observed at Earth and other planets, but no one had detected plasmoids at Uranus — yet.
DiBraccio ran the data through her processing pipeline and the results came back clean. “I think it definitely is,” she said.

The bubble escapes

The plasmoid DiBraccio and Gershman found occupied a mere 60 seconds of Voyager 2’s 45-hour-long flight by Uranus. It appeared as a quick up-down blip in the magnetometer data. “But if you plotted it in 3D, it would look like a cylinder,” Gershman said.
Comparing their results to plasmoids observed at Jupiter, Saturn and Mercury, they estimated a cylindrical shape at least 127,000 miles (204,000 kilometers) long, and up to roughly 250,000 miles (400,000 kilometers) across. Like all planetary plasmoids, it was full of charged particles — mostly ionized hydrogen, the authors believe.​
Readings from inside the plasmoid — as Voyager 2 flew through it — hinted at its origins. Whereas some plasmoids have a twisted internal magnetic field, DiBraccio and Gershman observed smooth, closed magnetic loops. Such loop-like plasmoids are typically formed as a spinning planet flings bits of its atmosphere to space. “Centrifugal forces take over, and the plasmoid pinches off,” Gershman said. According to their estimates, plasmoids like that one could account for between 15 and 55% of atmospheric mass loss at Uranus, a greater proportion than either Jupiter or Saturn. It may well be the dominant way Uranus sheds its atmosphere to space.
How has plasmoid escape changed Uranus over time? With only one set of observations, it’s hard to say.
“Imagine if one spacecraft just flew through this room and tried to characterize the entire Earth,” DiBraccio said. “Obviously it’s not going to show you anything about what the Sahara or Antarctica is like.”
But the findings help focus new questions about the planet. The remaining mystery is part of the draw. “It’s why I love planetary science,” DiBraccio said. “You’re always going somewhere you don’t really know.”

Related
Last Updated: March 25, 2020
Editor: Miles Hatfield

Hubble Hooks a One-Arm Galaxy | NASA

Hubble Hooks a One-Arm Galaxy | NASA



Hubble Hooks a One-Arm Galaxy

Hubble image of NGC 4618
NGC 4618 was discovered on April 9, 1787, by the German-British astronomer William Herschel, who also discovered Uranus in 1781. Only a year before discovering NGC 4618, Herschel theorized that the “foggy” objects astronomers were seeing in the night sky were likely to be large star clusters located much farther away than the individual stars he could easily discern. 
Since Herschel proposed his theory, astronomers have come to understand that what he was seeing was a galaxy. NGC 4618, classified as a barred spiral galaxy, has the special distinction among other spiral galaxies of only having one arm rotating around the center of the galaxy. 
Located about 21 million light-years from our galaxy in the constellation Canes Venatici, NGC 4618 has a diameter of about one-third that of the Milky Way. Together with its neighbor, NGC 4625, it forms an interacting galaxy pair, which means that the two galaxies are close enough to influence each other gravitationally. These interactions may result in the two (or more) galaxies merging together to form a new formation, such as a ring galaxy.
Text credit: ESA (European Space Agency)
Image credit: ESA/Hubble & NASA, I. Karachentsev
Last Updated: March 27, 2020
Editor: Rob Garner

WFIRST Will Look Toward the Galactic Center for Microlensing Events

How Gravitational Microlensing Looks to an Observer

Warped Space-time to Help WFIRST Find Exoplanets | NASA

Warped Space-time to Help WFIRST Find Exoplanets | NASA



WFIRST Microlensing Still

Warped Space-time to Help 

WFIRST Find Exoplanets

NASA’s Wide Field Infrared Survey Telescope (WFIRST) will search for planets outside our solar system toward the center of our Milky Way galaxy, where most stars are. Studying the properties of exoplanet worlds will help us understand what planetary systems throughout the galaxy are like and how planets form and evolve.
Combining WFIRST’s findings with results from NASA’s Kepler and Transiting Exoplanet Survey Satellite (TESS) missions will complete the first planet census that is sensitive to a wide range of planet masses and orbits, bringing us a step closer to discovering habitable Earth-like worlds beyond our own.
To date, astronomers have found most planets when they pass in front of their host star in events called transits, which temporarily dim the star's light. WFIRST data can spot transits too, but the mission will primarily watch for the opposite effect — little surges of radiance produced by a light-bending phenomenon called microlensing. These events are much less common than transits because they rely on the chance alignment of two widely separated and unrelated stars drifting through space.
This animation illustrates two ways a gravitational microlensing event could look to an observer. At top is the way it could appear to a telescope able to resolve the features. The source star appears to move and distort as its light is warped by the closer lensing star and its planet. At bottom is a light curve showing the intensity of light from the event. As the two stars reach best alignment, the signal reaches its peak. The planet orbiting the lensing star is detectable as a brief change in brightness.
Credits: NASA's Goddard Space Flight Center Conceptual Image Lab
"Microlensing signals from small planets are rare and brief, but they’re stronger than the signals from other methods,” said David Bennett, who leads the gravitational microlensing group at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Since it’s a one-in-a-million event, the key to WFIRST finding low-mass planets is to search hundreds of millions of stars.”
In addition, microlensing is better at finding planets in and beyond the habitable zone — the orbital distances where planets might have liquid water on their surfaces.

Microlensing 101

This effect occurs when light passes near a massive object. Anything with mass warps the fabric of space-time, sort of like the dent a bowling ball makes when set on a trampoline. Light travels in a straight line, but if space-time is bent — which happens near something massive, like a star — light follows the curve.
Any time two stars align closely from our vantage point, light from the more distant star curves as it travels through the warped space-time of the nearer star. This phenomenon, one of the predictions of Einstein’s general theory of relativity, was famously confirmed by British physicist Sir Arthur Eddington during a total solar eclipse in 1919. If the alignment is especially close, the nearer star acts like a natural cosmic lens, focusing and intensifying light from the background star.
Planets orbiting the foreground star may also modify the lensed light, acting as their own tiny lenses. The distortion they create allows astronomers to measure the planet’s mass and distance from its host star. This is how WFIRST will use microlensing to discover new worlds.

Familiar and exotic worlds

“Trying to interpret planet populations today is like trying to interpret a picture with half of it covered,” said Matthew Penny, an assistant professor of physics and astronomy at Louisiana State University in Baton Rouge who led a study to predict WFIRST’s microlensing survey capabilities. “To fully understand how planetary systems form we need to find planets of all masses at all distances. No one technique can do this, but WFIRST’s microlensing survey, combined with the results from Kepler and TESS, will reveal far more of the picture.”
More than 4,000 confirmed exoplanets have been discovered so far, but only 86 were found via microlensing. The techniques commonly used to find other worlds are biased toward planets that tend to be very different from those in our solar system. The transit method, for example, is best at finding sub-Neptune-like planets that have orbits much smaller than Mercury’s. For a solar system like our own, transit studies could miss every planet.
WFIRST’s microlensing survey will help us find analogs to every planet in our solar system except Mercury, whose small orbit and low mass combine to put it beyond the mission’s reach. WFIRST will find planets that are the mass of Earth and even smaller — perhaps even large moons, like Jupiter’s moon Ganymede.
WFIRST will find planets in other poorly studied categories, too. Microlensing is best suited to finding worlds from the habitable zone of their star and farther out. This includes ice giants, like Uranus and Neptune in our solar system, and even rogue planets — worlds freely roaming the galaxy unbound to any stars.
While ice giants are a minority in our solar system, a 2016 study indicated that they may be the most common kind of planet throughout the galaxy. WFIRST will put that theory to the test and help us get a better understanding of which planetary characteristics are most prevalent.

Hidden gems in the galactic core

WFIRST will make its microlensing observations in the direction of the center of the Milky Way galaxy. The higher density of stars will yield more microlensing events, including those that reveal exoplanets.
Credits: NASA's Goddard Space Flight Center Conceptual Image Lab
WFIRST will explore regions of the galaxy that haven’t yet been systematically scoured for exoplanets due to the different goals of previous missions. Kepler, for example, searched a modest-sized region of about 100 square degrees with 100,000 stars at typical distances of around a thousand light years. TESS scans the entire sky and tracks 200,000 stars, however their typical distances are around 100 light-years. WFIRST will search roughly 3 square degrees, but will follow 200 million stars at distances of around 10,000 light years.
Since WFIRST is an infrared telescope, it will see right through the clouds of dust that block other telescopes from studying planets in the crowded central region of our galaxy. Most ground-based microlensing observations to date have been in visible light, making the center of the galaxy largely uncharted exoplanet territory. A microlensing survey conducted since 2015 using the United Kingdom Infrared Telescope (UKIRT) in Hawaii is smoothing the way for WFIRST’s exoplanet census by mapping out the region.
The UKIRT survey is providing the first measurements of the rate of microlensing events toward the galaxy’s core, where stars are most densely concentrated. The results will help astronomers select the final observing strategy for WFIRST’s microlensing effort.
The UKIRT team’s most recent goal is detecting microlensing events using machine learning, which will be vital for WFIRST. The mission will produce such a vast amount of data that combing through it solely by eye will be impractical. Streamlining the search will require automated processes.
Additional UKIRT results point to an observing strategy that will reveal the most microlensing events possible while avoiding the thickest dust clouds that can block even infrared light.
“Our current survey with UKIRT is laying the groundwork so that WFIRST can implement the first space-based dedicated microlensing survey,” said Savannah Jacklin, an astronomer at Vanderbilt University in Nashville, Tennessee who has led several UKIRT studies. “Previous exoplanet missions expanded our knowledge of planetary systems, and WFIRST will move us a giant step closer to truly understanding how planets — particularly those within the habitable zones of their host stars — form and evolve.”

From brown dwarfs to black holes

The same microlensing survey that will reveal thousands of planets will also detect hundreds of other bizarre and interesting cosmic objects. Scientists will be able to study free-floating bodies with masses ranging from that of Mars to 100 times the Sun’s.
The low end of the mass range includes planets that were ejected from their host stars and now roam the galaxy as rogue planets. Next are brown dwarfs, which are too massive to be characterized as planets but not quite massive enough to ignite as stars. Brown dwarfs don’t shine visibly like stars, but WFIRST will be able to study them in infrared light through the heat left over from their formation.
WFIRST Expected Exoplanets
Kepler and other exoplanet search efforts have discovered thousands of large planets with small orbits, represented by the red and black dots on this chart. WFIRST will find planets with a much wider range of masses orbiting farther from their host star, shown by the blue dots.
Credits: NASA’s Goddard Space Flight Center, adapted from Penny et al. (2019)
Objects at the higher end include stellar corpses — neutron stars and black holes — left behind when massive stars exhaust their fuel. Studying them and measuring their masses will help scientists understand more about stars’ death throes while providing a census of stellar-mass black holes.
“WFIRST’s microlensing survey will not only advance our understanding of planetary systems,” said Penny, “it will also enable a whole host of other studies of the variability of 200 million stars, the structure and formation of the inner Milky Way, and the population of black holes and other dark, compact objects that are hard or impossible to study in any other way.”
The FY2020 Consolidated Appropriations Act funds the WFIRST program through September 2020. The FY2021 budget request proposes to terminate funding for the WFIRST mission and focus on the completion of the James Webb Space Telescope, now planned for launch in March 2021. The Administration is not ready to proceed with another multi-billion-dollar telescope until Webb has been successfully launched and deployed.
WFIRST is managed at Goddard, with participation by NASA's Jet Propulsion Laboratory and Caltech/IPAC in Pasadena, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from research institutions across the United States.
Banner: This illustration shows the concept of gravitational microlensing. When one star in the sky passes nearly in front of another, it can lens light from the background source star. If the nearer star hosts a planetary system, the planets can also act as lenses, each producing a short deviation in the brightness of the source. Credit: NASA's Goddard Space Flight Center Conceptual Image Lab​

Media contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940
Last Updated: March 30, 2020
Editor: Ashley Balzer

NASA Awards Artemis Contract for Gateway Logistics Services | NASA

NASA Awards Artemis Contract for Gateway Logistics Services | NASA



NASA Awards Artemis 

Contract for Gateway 

Logistics Services

Illustration of the SpaceX Dragon XL as it is deployed from the Falcon Heavy's second stage in high Earth orbit
Illustration of the SpaceX Dragon XL as it is deployed from the Falcon Heavy's second stage in high Earth orbit on its way to the Gateway in lunar orbit.
Credits: SpaceX
NASA has selected SpaceX of Hawthorne, California, as the first U.S. commercial provider under the Gateway Logistics Services contract to deliver cargo, experiments and other supplies to the agency’s Gateway in lunar orbit. The award is a significant step forward for NASA’s Artemis program that will land the first woman and next man on the Moon by 2024 and build a sustainable human lunar presence.
At the Moon, NASA and its partners will gain the experience necessary to mount a historic human mission to Mars.
SpaceX will deliver critical pressurized and unpressurized cargo, science experiments and supplies to the Gateway, such as sample collection materials and other items the crew may need on the Gateway and during their expeditions on the lunar surface. 
“This contract award is another critical piece of our plan to return to the Moon sustainably,” said NASA Administrator Jim Bridenstine. “The Gateway is the cornerstone of the long-term Artemis architecture and this deep space commercial cargo capability integrates yet another American industry partner into our plans for human exploration at the Moon in preparation for a future mission to Mars.”
NASA is planning multiple supply missions in which the cargo spacecraft will stay at the Gateway for six to 12 months at a time. These firm-fixed price, indefinite delivery/indefinite quantity contracts for logistics services guarantee two missions per logistics services provider with a maximum total value of $7 billion across all contracts as additional missions are needed.
“Returning to the Moon and supporting future space exploration requires affordable delivery of significant amounts of cargo,” said SpaceX President and Chief Operating Officer Gwynne Shotwell. “Through our partnership with NASA, SpaceX has been delivering scientific research and critical supplies to the International Space Station since 2012, and we are honored to continue the work beyond Earth’s orbit and carry Artemis cargo to Gateway.”
The Gateway Logistics Services contract enables NASA to order missions for as long as 12 years with a 15-year performance period and provides the ability to add new competitive providers. These missions will support NASA’s plans for sustainable exploration with both international and commercial partners, while developing the experience and capabilities necessary to send humans to Mars. 
“This is an exciting new chapter for human exploration,” said Mark Wiese, Deep Space Logistics manager at NASA’s Kennedy Space Center in Florida. “We are bringing the innovative thinking of commercial industry into our supply chain and helping ensure we’re able to support crews preparing for lunar surface expeditions by delivering the supplies they need ahead of time.”
Charged with returning to the Moon in the next four years, NASA’s Artemis program  will reveal new knowledge about the Moon, Earth and our origins in the solar system. The Gateway is a vital part of NASA’s deep space exploration plans, along with the Space Launch System (SLS) rocket, Orion spacecraft, and human landing system that will send astronauts the Moon. One standard logistics service mission is anticipated for each Artemis SLS/Orion crewed mission to the Gateway. Gaining new experiences on and around the Moon will prepare NASA to send the first humans to Mars in the coming years, and the Gateway will play a vital role in this process.
“We’re making significant progress moving from our concept of the Gateway to reality,” said Dan Hartman, Gateway program manager at NASA’s Johnson Space Center in Houston. “Bringing a logistics provider onboard ensures we can transport all the critical supplies we need for the Gateway and on the lunar surface to do research and technology demonstrations in space that we can’t do anywhere else. We also anticipate performing a variety of research on and within the logistics module.”
For more information about NASA’s Moon to Mars exploration plans, visit:
-end-
Gina Anderson
Headquarters, Washington
202-358-1100
gina.n.anderson@nasa.gov

Isidro Reyna
Johnson Space Center, Houston
281-483-5111
isidro.r.reyna@nasa.gov

Amanda Griffin
Kennedy Space Center, Fla.
321-867-3583
amanda.griffin@nasa.gov
Last Updated: March 27, 2020
Editor: Sean Potter

10.9 Million Names Now Aboard NASA's Perseverance Mars Rover | NASA

10.9 Million Names Now Aboard NASA's Perseverance Mars Rover | NASA



10.9 Million Names Now 

Aboard NASA's Perseverance 

Mars Rover

A placard commemorating NASA's "Send Your Name to Mars" campaign
A placard commemorating NASA's "Send Your Name to Mars" campaign was installed on the Perseverance Mars rover on March 16, 2020, at Kennedy Space Center. Three silicon chips (upper left corner) were stenciled with 10,932,295 names and the essays from 155 finalists in NASA's "Name the Rover" contest.
Credits: NASA/JPL-Caltech
NASA's "Send Your Name to Mars" campaign invited people around the world to submit their names to ride aboard the agency's next rover to the Red Planet. Some 10,932,295 people did just that. The names were stenciled by electron beam onto three fingernail-sized silicon chips, along with the essays of the 155 finalists in NASA's "Name the Rover" contest. The chips were then were attached to an aluminum plate on NASA's Perseverance Mars rover at Kennedy Space Center in Florida on March 16. Scheduled to launch this summer, Perseverance will land at Jezero Crater on Feb. 18, 2021.
The three chips share space on the anodized plate with a laser-etched graphic depicting Earth and Mars joined by the star that gives light to both. While commemorating the rover that connects the two worlds, the simple illustration also pays tribute to the elegant line art of the plaques aboard the Pioneer spacecraft and golden records carried by Voyagers 1 and 2. Affixed to the center of the rover's aft crossbeam, the plate will be visible to cameras on Perseverance's mast.
Currently, the coronavirus has not impacted the Mars Perseverance rover launch schedule. The installation was one of numerous recent activities performed by the Perseverance assembly, test and launch operations team. On March 21, the team began reconfiguring the rover so it can ride atop the Atlas V rocket. Steps included stowing the robotic arm, lowering and locking in place the remote sensing mast and high-gain antenna, and retracting its legs and wheels.
Top center: The plate on the aft crossbeam of NASA's Mars Perseverance rover
Top center: The plate on the aft crossbeam of NASA's Mars Perseverance rover — seen here on March 16, 2020, at NASA's Kennedy Space Center— carries 10,932,295 names submitted by people during NASA's "Send Your Name to Mars" campaign and essays of the 155 finalists in the "Name the Rover" contest.
Credits: NASA/JPL-Caltech
The Perseverance rover is a robotic scientist weighing just under 2,300 pounds (1,043 kilograms). It will search for signs of past microbial life, characterize Mars' climate and geology, collect samples for future return to Earth, and help pave the way for human exploration of the Red Planet.
JPL, a division of Caltech in Pasadena, is building and will manage operations of the Mars Perseverance rover for NASA. The agency's Launch Services Program, based at the agency's Kennedy Space Center in Florida, is responsible for launch management. The Mars 2020 project with its Perseverance rover is part of a larger program that includes missions to the Moon as a way to prepare for human exploration of the Red Planet. Charged with returning astronauts to the Moon by 2024, NASA will establish a sustained human presence on and around the Moon by 2028 through NASA's Artemis lunar exploration plans.
For more information about the mission, go to:
For more about NASA's Moon to Mars plans, visit:
Grey Hautaluoma / Alana Johnson
Headquarters, Washington
202-358-0668 / 202-358-1501
grey.hautaluoma-1@nasa.gov / alana.r.johnson@nasa.gov
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
david.c.agle@jpl.nasa.gov
2020-057
Last Updated: March 30, 2020
Editor: Tony Greicius

El ‘sub-realismo’ criollo de Marcos López | Babelia | EL PAÍS

El ‘sub-realismo’ criollo de Marcos López | Babelia | EL PAÍS



El ‘sub-realismo’ criollo de Marcos López

El ‘sub-realismo’ criollo de Marcos López

El artista argentino, representante del pop latino, vuelve su mirada a la fotografía vernácula en una serie que podrá verse próximamente en Barcelona

La vista desde mi ventana | Babelia | EL PAÍS

La vista desde mi ventana | Babelia | EL PAÍS

La vista desde mi ventana

La vista desde mi ventana

El escritor Richard Ford, autor de 'El día de la independencia' y ‘Canadá’, relata la llegada de la pandemia a Maine, un lugar acostumbrado al aislamiento social, como el resto del país

Salvar la casa | Babelia | EL PAÍS

Salvar la casa | Babelia | EL PAÍS



Guillermo Arriaga, visto por Sciammarella.

Salvar la casa

Apuntes sobre María Kodama | Babelia | EL PAÍS

Apuntes sobre María Kodama | Babelia | EL PAÍS

María Kodama, el 18 de marzo en Buenos Aires.

Apuntes sobre María Kodama

Una gran novela para el fin de una época | Babelia | EL PAÍS

Una gran novela para el fin de una época | Babelia | EL PAÍS

Raquel Taranilla, ganadora del premio Biblioteca Breve, el 10 de febrero en Barcelona.

Una gran novela para el fin de una época

Memorias y olvidos | Babelia | EL PAÍS

Memorias y olvidos | Babelia | EL PAÍS

Un soldado alemán registra los enseres domésticos de unos ciudadanos, en Mannheim en 1943.

Memorias y olvidos