lunes, 13 de mayo de 2019

ESA Science & Technology: From gamma rays to X-rays: new method pinpoints previously unnoticed pulsar emission

ESA Science & Technology: From gamma rays to X-rays: new method pinpoints previously unnoticed pulsar emission



FROM GAMMA RAYS TO X-RAYS: NEW METHOD PINPOINTS PREVIOUSLY UNNOTICED PULSAR EMISSION

21 November 2018
Based on a new theoretical model, a team of scientists explored the rich data archive of ESA's XMM-Newton and NASA's Chandra space observatories to find pulsating X-ray emission from three sources. The discovery, relying on previous gamma-ray observations of the pulsars, provides a novel tool to investigate the mysterious mechanisms of pulsar emission, which will be important to understand these fascinating objects and use them for space navigation in the future.

XMM-Newton's view of pulsar J1826-1256. Credit: ESA/XMM-Newton/J. Li, DESY, Germany
Lighthouses of the Universe, pulsars are fast-rotating neutron stars that emit beams of radiation. As pulsars rotate and the beams alternatively point towards and away from Earth, the source oscillates between brighter and dimmer states, resulting in a signal that appears to 'pulse' every few milliseconds to seconds, with a regularity rivalling even atomic clocks.
Pulsars are the incredibly dense, extremely magnetic, relics of massive stars, and are amongst the most extreme objects in the Universe. Understanding how particles behave in such a strong magnetic field is fundamental to understanding how matter and magnetic fields interact more generally.
Originally detected through their radio emission, pulsars are now known to also emit other types of radiation, though typically in smaller amounts. Some of this emission is standard thermal radiation – the type that everything with a temperature above absolute zero emits. Pulsars release thermal radiation when they accrete matter, for example from another star.

No hay comentarios: